If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+33x-68=0
a = 3; b = 33; c = -68;
Δ = b2-4ac
Δ = 332-4·3·(-68)
Δ = 1905
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{1905}}{2*3}=\frac{-33-\sqrt{1905}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{1905}}{2*3}=\frac{-33+\sqrt{1905}}{6} $
| g-70/2=10 | | X+2+x+2=10 | | 10n^2+11n-14=0 | | 13=5n+9 | | 36+3n=93 | | 5w-3w=32 | | 5-4a-7a=16 | | -85+(-11)=d | | |9m+6|=-12 | | 6-13=3x+1 | | b/100=5/10 | | 6.4=−t/8.5 | | 22÷3x=40 | | (3x-2)=84 | | 22/3x=40 | | 5m+5+m=12+3m+2m-1 | | 3(2x+8)-4(x-2)=8 | | 0.25+1x/2=4 | | 4x+3(x–2)=-(5x–20)–x | | -2n+14=8 | | 3-2x-4x=7 | | 2(x+2)=-2x+40 | | x+3x-x=15 | | x3-4x^2+5x-20=0 | | 7x+12=-3x+2 | | -6x=-5x-5-x | | 5x+9−2x=42 | | -9r-7=-6r+3-4r | | 14x-2=180,x | | 63x-49=7(9x-7) | | 9(n+6)=-3(n-2) | | 1.50x+21.00=2.75x+11.00 |